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Abstract 

One school of thought in quantum measurement theory adopts as its aim the derivation 
of a certain mixed statistical operator to characterize the ensemble of global object- 
apparatus systems subsequent to the measurement interaction. This paper demonstrates 
that even if that goal were achieved, the consequent theory of measurement would be 
self-contradictory; hence the measurement problem is improperly formulated. The 
epistemological root of the difficulty is discussed briefly. A logical resolution is offered in 
terms of quantum axiomatics by emphasizing the actual relationship of quantum theory 
to experimental and observational data. 

1. Formal Quantum Measurement Theory and Its Elusive Goal 

Whenever quantum mechanics is used to describe a physical experience 
of macroscopic scope, strenuous theoretical efforts are often made to cast 
the irreducibly probabilistic and indeterministic theory into the prosaic 
mechanical molds of  the classical world view. The results are seldom 
gratifying, for they frequently reflect a retrogressive tendency in the 
philosophy of physics, where positive epistemological innovation aimed at 
comprehending macroexperiences in terms of sui generis quantal constructs 
would be far more satisfying. 

The quantum mechanics of  macrosystems embraces several basic 
dilemmas in the foundations of physics, among these the classical limit 
problem, the problem of irreversibility, and the theory of measurement. It  
is the latter with which the present analysis is concerned. 'Quantum theory 
of  measurement '  is a rubric which encompasses a variety of  theoretical 
investigations,~ ranging in methodology and content from metaphysical 
and epistemological studies of  quantum physics to formal manipulations 
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of the quantal algorithm sometimes devoid of any clear empirical interpre- 
tation. The subject is controversial, and lucid contributions to the field can 
be quite stimulating. Indeed, at the core of the many arguments over 
quantal measurement there is an important philosophical problem. It is a 
problem of explication (Park, 1968), of transposition of the old concept of 
measurement into a new distinctly quantal context, of evolution toward a 
modern Weltansicht for physics in which the mathematical models of 
quantum theory could replace, even in descriptions of macroscopic 
apparatus, the mechanical models of our present intuition. 

Unfortunately, this significant problem in the philosophical foundations 
of physics is almost traditionally oversimplified in the following formal 
manner. The focus is usually placed upon the quantal characterization of 
the 'pointers' which record, for direct perception by the experimenter, the 
data measured using an apparatus. Let 'pointer position' be an observable 
A of the apparatus (hence of the global system comprised of object system 
plus apparatus) and suppose that the measurement interaction is such that 
afterwards the probability distribution for pointer positions is nonzero 
only for a specific subset {a,} of A-eigenvalues. (For the contemplated 
interaction to be a measurement, there must of course be an appropriate 
correlation between the A-eigenvalues and the eigenvalues of an observable 
of interest in the object system.) 

An early goal of the quantum theory of measurement was to prove this 
proposition: 

(a) The postmeasurement state of the apparatus M alone must be the 
(reduced) statistical operator 

PM= ~ P.I~.> (~.I (1.1) 

where ~, denotes an A-eigenvector belonging to an. The problem was first 
studied by yon Neumann (1955), who demonstrated that certain measure- 
ment interactions could generate correlations leading to (1.I) as the post- 
measurement state of the apparatus alone. Later Wigner (1952) and others 
(Araki & Yanase, 1961) showed that in realistic cases (a) is more likely to 
be valid approximately than rigorously. For philosophical reasons to be 
examined below, other theorists have insisted upon the following stronger 
assertion as a necessary trait of the measurement process: 

(b) The postmeasurement state of the global system (object-plus- 
apparatus) must be the statistical operator 

p = Y~PnI ~'n> (~'nl (1.2) 

where ~n denotes an eigenvector belonging to eigenvalue a, of the global 
system observable 1 | A. (1 is the identity in the object's Hilbert space.) 

Attempts to establish (b), which I shall call the Formal Quantum Theory 
of Measurement (FQTM) have recently culminated in the work of Fine 
(1970), who showed, under rather general conditions, that (1.2) cannot be 
the postmeasurement global state. Soon there was a rejoinder from 
Moldauer (1972), who recalled yon Neumann's proof that (1.1) can be the 
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postmeasurement apparatus state; i.e., PM can be the reduced density 
operator for the apparatus even when the global system (object-plus- 
apparatus) is in a pure state expressible in terms of the {7~n} only as a 
coherent superposition. 

Such an exchange, in which the participants do not speak directly to 
each other's points, is nothing new to the quantum theory of measurement. 
Undoubtedly the school of thought represented in this instance by Fine 
remains adamant in its belief that quantum physics is beset with a grave 
problem due to the elusive character of a proof for proposition (b). 

Having granted earlier that explication of the measurement process is a 
significant facet of quantal foundations research, I shall explain below why 
the proof or disproof of proposition (b) is essentially irrelevant. There do 
exist profound physical and philosophical problems concerning the 
adaptation of quantum mechanical modes of thought to the realm of 
ordinary macroscopic observation; but FQTM offers only a misleading 
and contradictory rendition of the problem of measurement. 

2. The Inevitable Failure of F Q T M  

Let us suppose for the moment that the goal of the formal measurement 
theorists had been achieved; i.e., assume there does exist an initial apparatus 
state and a correlating interaction between object and apparatus such that 
the post-measurement global state is given by (1.2). To consider a simple 
case, let the observable being measured be dichotomic so that after the 
measurement process the experimenter would find the pointer position to 
be either al or a2. According to our hypothetical FQTM, the post- 
measurement global state is therefore 

P =Pl 7'1) (7Jl] + (1 -p)]  ~2) (7J2[ (2.1) 

What has been accomplished ? What does (2.1) mean physically ? Conven- 
tional FQTM wisdom interprets (2.1) as a description of an ensemble of 
object-apparatus systems, of which the fractionp is in 1 | A-eigenstate ~1 
and certain therefore to 'possess' pointer position al. The rest of the 
ensemble members are said to be in state ~2, hence to have pointer position 
az. This is to be contrasted to a global pure state such as 

~ f = pl/Z 711 + e~(1 _p)1/2 712 (2.2) 

which FQTM proponents regard as a description in which the pointer on 
the apparatus, contrary to macrophysical experience, has no position at 
all. We shall return to this point later. 

First, however, the seeming reasonableness of the FQTM interpretation 
of (2.1) bears closer scrutiny. If, as we have assumed for the sake of argu- 
ment, FQTM were in fact successful in deriving (2.1), would this actually 
mean that for each run of an experiment, the object-apparatus system 
would invariably emerge either in the state 7/1 or in the state ~z ? 
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A simple application of a theorem due to Schr6dinger (1936) establishes 
beyond doubt that the foregoing question must be answered in the negative. 
Hence even if the FQTM school succeeded in proving proposition (b), it 
still would have failed to confer upon the postmeasurement global system 
a state whose physical interpretation satisfied the philosophical demands 
that motivated the FQTM effort in the first place. 

The insurmountable difficulty for FQTM may be expressed as follows. 
If the ensemble characterized by (2.1) can, as in the FQTM interpretation, 
be regarded as consisting of two pure subensembles with state vectors 
V~, ~2, it can, with equally valid justification, be said to be consist of 
several pure subensembles, one of which has a state vector #1 which can 
be arbitrarily preassigned, provided only that #~ be a superposition of 
~ui, ~2: 

~1~1 = Cll ~'/1 § C12 ~J2 (2.3) 

For an explicit example, consider the following equality: 

P =Pl ~e~5 ( e ,  I + (1 -P)I  e25 OV~ t 

= wl#,) (~1  + (1 - w)[#2) (~21 (2.4) 
provided 

w l i e -12§  Ic12J2  -1 
= ( 2 . 5 )  

02 = c21 ~1 + c22 ~2 (2.6) 

= (1 - w) (1  - p ) ]  (2.7) 

\c12! c21 (2.8) 

Equations (2.4)-(2.8) were obtained by applying SchrOdinger's general 
work on mixtures to the special case (2.1); however, it is a straightforward 
matter to verify the result (2.4) directly. 

If ~ and ku2 are orthogonal, then in general ~1 and #2 will not be 
orthogonal unless p = �89 Although textbook introductions to the statistical 
operator commonly use, for mathematical simplicity, only the spectral 
expansion of p, there is no physical reason for such a restriction. Indeed 
if two pure ensembles having known nonorthogonal state vectors were 
combined, the statistical operator for the new total ensemble would be 
immediately and naturally expressible as a linear combination of non- 
orthogonal projectors. Thus the possible nonorthogonality of #~ and #2 in 
no way vitiates our argument against FQTM. In fact, the FQTM assump- 
tion that kul and ~2 must be eigenstates of 1 | A, hence orthogonal, is 
perhaps too strong; for example, two minimum uncertainty wave packets 
centered at a~, a2 would seem to be a reasonable quantal description of 
pointer positions, yet they would be only approximately orthogonal. 
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To return now to the main point, let us choose as #x the state vector #y 
defined in (2.2); i.e., let 

ell =pal2, e12 = (1 -p)l /2 e~: (2.9) 

From (2.5)-(2.8), we then obtain 

w = �89 c21 =pl/2, c22 = -(1 -p )me~:  (2.10) 
and therefore 

P =Pl 7,1> (7,11 + (1 -p ) [  7,2> (7'21 

= �89 < 11 + �89 < 21 
where 

and 
@I =pl/2 7,1 + e~:(l _p)i/z 7,2 = @: 

(2.11) 

(2.12) 

~2 =pl/2 t//1 _ e~:(1 _p)1/2 7,2 = ~b :+, (2.13) 

Global state vectors of the general type ~b: inevitably emerge dynamically 
from measurement processes in which object and apparatus have been 
initially in pure states. As noted above, such superpositions of pointer 
position eigenstates are anathema to the FQTM school, who insist that ~ :  
means in quantum theory that the pointer has no position. Ironically, we 
see now that even if the FQTM program were successful in replacing ~ :  
by a statistical mixture (2.1) of pointer position eigenstates, that very 
mixture (2.11) could also be partitioned into pure subensembles with state 
vectors ~:, ~:+~, both of the kind whose alleged unacceptability originally 
inspired the FQTM investigations. 

To use the philosophical language of FQTM, the ensemble in which the 
fraction p of systems has state % and pointer position al with the re- 
mainder having state ~gz and pointer position az is also an ensemble in 
which half the systems have state ~ :  and no pointer position at all and 
the other half have state ~b:+, and similarly no pointer position at all. Thus 
each system has at once a definite pointer position and no pointer position ! 
Reductio ad absurdum. Even if FQTM were successful, it would be self- 
contradictory. 

3. Logical and Epistemologieal Aspects of the Problem 

The paradox derived above undermines the basic structure of FQTM. 
It does not, however, expose any logical defect in quantum physics itself. 
Quantum mechanics is obviously an established physical theory whose 
epistemic connections to nature are well known; it is applied routinely and 
uncontroversially to myriad physical situations. The flaw in FQTM is at 
root philosophical, inhering in a steadfast refusal to accept quantum 
mechanics for what it is, a theory about the statistics of measurement results. 
Instead FQTM theorists are really pretending that quantum mechanics is 
epistemologically like classical analytical dynamics, which is traditionally 
construed to be a theory dealing primarily with the intrinsic properties of 
physical objects. 

15 
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This is not the place to dwell at length upon the epistemological subtleties 
which distinguish the FQTM school from quantum physicists like the 
present author who are untroubled by the apparent impossibility of 
deriving proposition (b). Fundamentally, FQTM appears to be founded 
on a quantal version of epistemological realism in which every system is 
presumed to possess a state vector as an intrinsic attribute; thus the pointer 
must 'have' either 7Jl or 7J2, the mixture (2.1) being interpreted to mean 
that some members of the ensemble have property 7Jl, others have property 
7t2. The contrary philosophical view, in which FQTM becomes an irrelevant 
quest and its internal contradictions unimportant, is a modern version of 
epistemological idealism wherein the function of physical theory is under- 
stood to be limited to describing experience rather than innate properties 
of objects. Probably the most incisive treatment of the latter view has been 
given by Margenau in his general scientific epistemology (Margenau, 1950) 
and in his latency theory of quantal measurement (Park & Margenau, 1968). 

However, instead of pursuing these deeply epistemological matters any 
further, it seems more appropriate for the present analysis to set forth in 
terms of quantum axiomatics the root of the FQTM difficulty and its 
resolution. From the perspective of FQTM, quantum mechanics is based 
upon this postulate (among others not in contention): each (closed) system 
possesses a state vector ~. The scalar product ~4~,[~) where qS, is the 
eigenvector belonging to eigenvaluef, of an observable F, is then interpreted 
as the probability amplitude that upon F-measurement the system will 
execute a quantum jump from state ~ to state (o,, f ,  being the numerical 
datum recorded by the experimenter. Only if ~ = ~b, is f ,  the certain result 
of the F-measurement; hence in that case the system is said to have the 
F-valuef,. 

It is in this axiomatic framework that the FQTM problem germinates. 
Because it is intuitively felt that pointers have positions, naturally it must 
be demanded that pointers have the corresponding state vectors as proper- 
ties. As we have seen, this viewpoint ultimately leads to self-contradiction 
and paradox. 

If we abandon the notion that each system possesses a state vector, the 
need for FQTM dissolves. (Such an abandonment is an easy step indeed 
for the experimental scientist who gathers numerical data, not Hilbert 
vectors.) The axiom which endowed each system with a state vector can be 
replaced by the following postulate: every repeatable preparation is 
characterized by a statistical operator p in the sense that Tr(pF) is the 
arithmetic mean of F-data collected by performing F-measurements upon 
the members of an ensemble of systems each prepared identically (in the 
manner/'/). A preparation// is  a set of reproducible empirical operations 
undertaken prior to each run of an experiment. The concept of  preparation 
(Margenau, 1937, 1963) is just as important to the fabric of quantum theory 
as the more controversial concept of measurement, but until recently 
remarkably little attention has been paid to the quantum theory of prepara- 
tion (Band & Park, 1972). 
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Once it is clearly understood that quantum theory exists to regularize 
and to make predictions concerning statistical quantities associated with 
collectives of data, not to describe as an unseen world of abstract saltatorial 
vectors borne by picturable mechanical objects, all of the quantal assertions 
which inspired FQTM and its attendant problems turn out to be merely 
colloquialisms automatically voiced but surely not taken literally by 
physical scientists. For example (Park, 1970), (qS,[~) is not the probability 
amplitude that 'the state will jump to qSn when F is measured', nor even the 
amplitude that 'the system will be found in state ~bn'; such language is 
devoid of experiential meaning. The scalar product (qSnlO) is the probability 
amplitude for the emergence of the F-datumf~ from an F-measurement act 
performed on a system prepared in the manner characterized by p = I ~)@1. 

Moreover, a preparation characterized by a mixed statistical operator 
like (2.1) cannot be rationally interpreted to mean that the ensemble is 
constituted of some systems possessing ~1, others possessing ~2; the non- 
uniqueness illustrated by (2.11) demolishes that simplistic view of mixtures. 
To clarify properly the physical distinction between pure and mixed 
preparations, yon Neumann's original conception of ensemble homogeneity 
must be recalled. 

A pure or homogeneous ensemble is one that cannot be partitioned into 
physically distinct subensembles; i.e., given p, there do not exist distinct 
statistical operators p(1), p(2) such that 

p = wl p(1) + w2 p(2) (3.1) 

According to von Neumann's mathematical analysis, every pure ensemble 
is characterized by a statistical operator of the form p = [O)(Ol. A mixture 
is then an inhomogeneous ensemble; its statistical operator can be resolved 
as in (3.1) with p(~), p~2) distinct. 

This theoretical concept of partitioning ensembles obtains its empirical 
meaning in the process of selection. If an ensemble is mixed, then in principle 
there exist 'filtration' procedures wherein certain systems of the ensemble 
are rejected and the rest are then regarded as the new ensemble of interest. 
In terms of the preparation concept, the new ensemble is generated by 
subjecting systems to the original preparation procedure plus selection. 
For a pure ensemble, selection is in principle impossible. 

The nonuniqueness of mixture resolutions into pure subensembles is now 
unproblematical, since we do not claim that each system possesses a 
(perhaps unknown) state vector. In fact the nonuniqueness merely affirms 
that a given mixture could have been produced by combining with appro- 
priate weights entirely different sets of homogeneous preparations; con- 
versely, the mixture can in principle be subdivided by selection in many 
different ways. 

Finally, let us consider again the matter of pointer positions. There can 
be no quarrel with the empirical fact which inspired the FQTM quest, viz.; 
that a macroscopic pointer in common observation seems to be endowed 
with classical kinematic 'properties' like position and velocity. However, 
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we would insist that whether or not the pointer possesses those attributes 
even when it is not observed is an ontological question beyond the com- 
petence or interest of  science. Thus for quantum mechanics to be compatible 
with human experience involving pointers, only the following proposition 
need be proved: after the measurement interaction between object and 
apparatus, the ensemble of  pointers (as opposed to the ensemble of global 
object-apparatus systems) must be a mixture which can by the process of 
selection be partitioned into subensembles each of which has a statistical 
operator corresponding to a single macrokinematical state of  the pointer. 
In other words, since an ensemble of actually observed pointers can in fact 
be described by saying that each individual pointer has a certain 'position' 
and 'velocity', quantum physics should not be in conflict with this common 
empirical experience. That indeed there is in principle no conflict was long 
ago demonstrated by von Neumann and others by proving the proposition 
(a) cited earlier. Today the interesting problems of measurement lie in the 
realm of  clarification. To deepen our grasp of quantum theory as applied 
to macroscopic systems is an exciting philosophical challenge. It is best 
appreciated in full recognition that quantum mechanics deals primarily 
with data, with physical experience, and not with a neoclassical mechanical 
universe of  objects possessing state vectors as properties. 
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